保温棉厂家
免费服务热线

Free service

hotline

010-00000000
保温棉厂家
热门搜索:
行业资讯
当前位置:首页 > 行业资讯

DC变换器的发展与应用

发布时间:2020-06-30 18:55:23 阅读: 来源:保温棉厂家

1引言

本文引用地址:直流-直流变换器(DC/DC)变换器广泛应用于远程及数据通讯、计算机、办公自动化设备、工业仪器仪表、军事、航天等领域,涉及到国民经济的各行各业。按额定功率的大小来划分,DC/DC可分为750W以上、750W~1W和1W以下3大类。进入20世纪90年代,DC/DC变换器在低功率范围内的增长率大幅度提高,其中6W~25WDC/DC变换器的增长率最高,这是因为它们大量用于直流测量和测试设备、计算机显示系统、计算机和军事通讯系统。由于微处理器的高速化,DC/DC变换器由低功率向中功率方向发展是必然的趋势,所以251W~750W的DC/DC变换器的增长率也是较快的,这主要是它用于服务性的医疗和实验设备、工业控制设备、远程通讯设备、多路通信及发送设备,DC/DC变换器在远程和数字通讯领

域有着广阔的应用前景。

DC/DC变换器将一个固定的直流电压变换为可变的直流电压,这种技术被广泛应用于无轨电车、地铁、列车、电动车的无级变速和控制,同时使上述控制具有加速平稳、快速响应的性能,并同时收到节约电能的效果。用直流斩波器代替变阻器可节约20%~30%的电能。直流斩波器不仅能起到调压的作用(开关电源),同时还能起到有效抑制电网侧谐波电流噪声的作用。

DC/DC变换器现已商品化,模块采用高频PWM技术,开关频率在500kHz左右,功率密度为0.31W/cm3~1.22W/cm3。随着大规模集成电路的发展,要求电源模块实现小型化,因此就要不断提高开关频率和采用新的电路拓扑结构。目前,已有一些公司研制生产了采用零电流开关和零电压开关技术的二次电源模块,功率密度有较大幅度的提高。

电子产业的迅速发展极大地推动了开关电源的发展。高频小型化的开关电源及其技术已成为现代电子设备供电系统的主流。在电子设备领域中,通常将整流器称为一次电源,而将DC/DC变换器称为二次电源。一次电源的作用是将单相或三相交流电网变换成标称值为48V的直流电源。目前,在电子设备中用的一次电源中,传统的相控式稳压电源己被高频开关电源取代,高频开关电源(也称为开关型整流器SMR)通过MOSFET或IGBT实现高频工作,开关频率一般控制在50kHz~100kHz范围内,实现高效率和小型化。近几年,开关整流器的功率容量不断扩大,单机容量己从48V/12.5A、48V/20A扩大到48V/200A、48V/400A。

因为电子设备中所用的集成电路的种类繁多,其电源电压也各不相同,在电子供电系统中,采用高功率密度的高频DC/DC隔离电源模块,从中间母线电压(一般为48V直流)变换成所需的各种直流电压,可以大大减小损耗、方便维护,且安装和增容非常方便。一般都可直接装在标准控制板上,对二次电源的要求是高功率密度。因为电子设备容量的不断增加,其电源容量也将不断增加。

2电力电子器件

功率变换技术高速发展的基础是电力电子器件和控制技术的高速发展,在21世纪,电力电子器件将进入第4代即智能化时代,具有如下显著的特征。

2.1高性能化

高性能化主要包括高电压、大容量、降低导通电压低损耗、高速度和高可靠性等4个方面。如IGBT的电流可达2kA~3kA、电压达到4kV~6kV,降低损耗是所有复合器件的发展目标。预计在21世纪IGBT、智能化功率模块(IPM)等器件的导通电压可降到1V以下,而MOSFET、IBGT、MCT等器件的应用频率将达到兆赫数量级。

2.2智能化和集成化

智能化的发展是系统智能集成(ASIPM),即将电源电路、各种保护以及PWM控制电路等都集成在一个芯片上,制成一个完整的功率变换器IC。集成电力电子模块(IPEM)是将驱动、自动保护、自诊断功能的IC与电力电子器件集成在一个模块中。由于不同的元器件、电路、集成电路的封装或相互连接产生的寄生参数已成为决定电力电子系统性能的关键,所以采用IPEM方法可减少设计工作量,便于生产自动化,提高系统质量、可靠性和可维护性,缩短设计周期,降低产品成本。

IPEM与IPM或PIC的不同之处在于后者是单层单片集成,一维封装;而前者是高电压、大电流、多层多片集成,三维封装,结构更复杂,多方向散热,其热设计也更加重要。IPEM研究课题中有待解决的基本问题是结构的确定和通用性,新型电力电子器件评估的主要方面是开关单元、拓扑结构、高电压大电流功率器件的单片集成。大功率无源器件集成、IPEM三维封装(控制寄生参数,将寄生影响控制在最小范围)、热管理、IPEM设计软件、接口与系统的兼容性、IPEM性能预测、可靠性冗余和容错等都需要跨学科研究。因为与现代电力电子学相关的学科十分广泛,包括基础理论学科,如固体物理、电磁学、电路理论;专业理论学科如电力系统、电子学、系统与控制、电机学及电气传动、通信理论、信号处理、微电子技术;及电磁测量、计算机仿真、CAD等,覆盖了材料、器件、电路与控制、磁学、热设计、封装、CAD集成、制造、电力电工应用等专业技术。就目前我国电力电子技术发展的现状而言,迫切需要跨学科并运用多种专业技术进行联合研究,以适应当今国际电力电子科技前沿技术的发展。

2.3模块化

模块化有两方面的含义,其一是指功率器件的模块化,其二是指单元的模块化。常见的功率器件模块含有1单元、2单元、6单元直至7单元,包括开关器件和与之串并联的续流二极管,实质上都属于标准功率模块(SPM)。近年来,有些公司把开关器件的驱动保护电路也装到功率模块中构成IPM,不但缩小了整机的体积,而且更加方便了整机的设计与制造。实际上,由于频率不断提高,致使引线寄生电感、寄生电容的影响愈加严重,对器件造成更大的电应力(表现为过电压、过电流毛刺)。为了提高系统的可靠性,有些制造商开发了“用户专用”功率模块(ASPM),它把一台整机的几乎所有硬件都以芯片的形式安装到一个模块中,使元器件之间不再有传统的引线连接,这样的模块经过严格、合理的热、电、机械方面的设计,产品性能优良。它类似于微电子电路中的用户专用集成电路(ASIC)。只要把控制软件写入该模块中的微处理器芯片,再把整个模块固定在相应的散热器上,就构成一台新型的开关电源装置。由此可见,模块化的目的不仅在于使用方便,可缩小整机体积,更重要的是取消了传统连线,把寄生参数值降到最小,从而把器件承受的电应力降至最低,提高了系统的可靠性。另外,大功率的开关电源,由于器件容量的限制和冗余度的增加,从提高可靠性方面考虑,一般采用多个独立的模块单元并联工作,采用均流技术,所有模块共同分担负载电流,一旦其中某个模块失效,其它模块再平均分担负载电流。这样,不但提高了功率容量,在有限的器件容量情况下可满足大电流输出的要求,而且通过增加相对于整个系统来说功率很小的冗余电源模块,极大地提高了系统的可靠性,即使万一出现单个模块故障,也不会影响系统的正常工作,而且可提供充分的时间进行修复。

3新的DC/DC变换器技术

3.1VRM技术

就DC/DC变换器而言,由于现代微处理器和一些超高速大规模集成电路芯片,如Intel、Pentium、Pro等,要求在低电压(2.4V~3.3V)、大电流(>13A)状态下工作,而其直流母线电压通常为5V~12V。这样,就需要将直流母线电压通过DC/DC变换器进行变换,通常用VRM来实现。显然,随着芯片集成密度、工作速度的进一步提高,芯片的工作电压将进一步下降,工作电流进一步增大。人们对VRM提出了新的挑战,要求VRM具有非常快速的负载电流响应,在保证足够小的体积的同时,还要具有高效率。要使VRM具有快速的负载电流动态响应,传统的解决办法是在VRM的输出端并联很多容量很大、等效串联电阻很小的退耦电容器。显然,该方法存在如下问题:

1)退耦电容器体

积很大,而现代微处理器对VRM的体积有着严格的要求。

2)退耦电容器仅能改善动态响应的影响阶段,对后阶段及总的动态响应时间没有作用。漏电开关相关文章:漏电开关原理激光器相关文章:激光器原理

临沂防静电工作服定做

北京工作服订制

潍坊制作职业装